AWT

AWT stands for Abstract Window Toolkit. It is a platform dependent API for
creating Graphical User Interface (GUI) for java programs.

Why AWT is platform dependent? Java AWT calls native platform (Operating
systems) subroutine for creating components such as textbox, checkbox, button etc.
For example an AWT GUI having a button would have a different look and feel across
platforms like windows, Mac OS & Unix, this is because these platforms have different
look and feel for their native buttons and AWT directly calls their native subroutine that
creates the button. In simple, an application build on AWT would look like a windows
application when it runs on Windows, but the same application would look like a Mac
application when runs on Mac OS.

AWT hierarchy

Java AWT hierarchy diagram

Components and containers

All the elements like buttons, text fields, scrollbars etc are known as components.
In AWT we have classes for each component as shown in the above diagram. To have
everything placed on a screen to a particular position, we have to add them to a
container. A container is like a screen wherein we are placing components like buttons,
text fields, checkbox etc. In short a container contains and controls the layout of
components. A container itself is a component (shown in the above hierarchy diagram)
thus we can add a container inside container.

Types of containers:

As explained above, a container is a place wherein we add components like text
field, button, checkbox etc. There are four types of containers available in AWT:
Window, Frame, Dialog and Panel. As shown in the hierarchy diagram above, Frame
and Dialog are subclasses of Window class.

Window: An instance of the Window class has no border and no title.

Dialog: Dialog class has border and title. An instance of the Dialog class cannot
exist without an associated instance of the Frame class.



Panel: Panel does not contain title bar, menu bar or border. It is a generic
container for holding components. An instance of the Panel class provides a container
to which to add components.

Frame: A frame has title, border and menu bars. It can contain several
components like buttons, text fields, scrollbars etc. This is most widely used container
while developing an application in AWT.

Java AWT Example

We can create a GUI using Frame in two ways:

1) By extending Frame class

2) By creating the instance of Frame class

AWT Example 1: creating Frame by extending Frame class

import java.awt.*;

public class SimpleExample extends Frame{

SimpleExample(){

setSize(500,300); //Setting Frame width and height
setTitle("This is my First AWT example"); //Setting the title of Frame
setVisible(true);
ks
public static void main(String args[]){
SimpleExample fr=new SimpleExample(); // Creating the instance
of Frame
ks

¥

AWT Example 2: creating Frame by creating instance of Frame class
import java.awt.*;
public class Example2 {

Example2()

{

Frame fr=new Frame(); //Creating Frame
fr.setSize(500, 300); //setting frame size

fr.setVisible(true);

b
public static void main(String args[])
{
Example2 ex = new Example2();
b
b

AWT UI Elements/Components:-

1)Label:- Label is a passive control because it does not create any event when
accessed by the user. The label control is an object of Label. A label displays a single
line of read-only text. However the text can be changed by the application programmer
but cannot be changed by the end user in any way.

Class declaration



Following is the declaration for java.awt.Label class:

public class Label extends Component implements Accessible

Class constructors

Label():-Constructs an empty label.

Label(String text):-Constructs a new label with the specified string of text, left
justified.

Label(String text, int alignment):-Constructs a new label that presents the
specified string of text with the specified alignment.

Class methods

void addNotify():-Creates the peer for this label.
int getAlignment():-Gets the current alignment of this label.
String getText():-Gets the text of this label.

protected String paramString():Returns a string representing the state of this
Label.

void setAlignment(int alignment):-Sets the alignment for this label to the
specified alignment
void setText(String text):-Sets the text for this label to the specified text.
Example:
import java.awt.*;
public class Example2 {
Example2()
{
Frame fr=new Frame(); //Creating Frame
Label Ib = new Label("UserId: "); //Creating a label
fr.add(lb); //adding label to the frame
fr.setSize(500, 300); //setting frame size
fr.setLayout(new FlowLayout()); //Setting the layout for the Frame

fr.setVisible(true);

b
public static void main(String args[])
{
Example2 ex = new Example2();
b
b
2.Button

Button is a control component that has a label and generates an event
when pressed. When a button is pressed and released, AWT sends an instance of
ActionEvent to the button, by calling processEvent on the button. The button's
processEvent method receives all events for the button; it passes an action event along
by calling its own processActionEvent method. The latter method passes the action



event on to any action listeners that have registered an interest in action events
generated by this button.

If an application wants to perform some action based on a button being pressed
and released, it should implement ActionListener and register the new listener to
receive events from this button, by calling the button's addActionListener method. The
application can make use of the button's action command as a messaging protocol.

Class declaration:-Following is the declaration for java.awt.Button class:

public class Button extends Component implements Accessible

Class constructors

Button():-Constructs a button with an empty string for its label

Button(String text):-Constructs a new button with specified label.

Class methods

void addActionListener(ActionListener 1):-Adds the specified action listener
to receive action events from this button

String getActionCommand():-Returns the command name of the action event
fired by this button.

String getLabel():-Gets the label of this button.

void removeActionListener(ActionListener |):-Removes the specified action
listener so that it no longer receives action events from this button.

void setActionCommand(String command):-Sets the command name for the
action event fired by this button.
void setLabel(String label):-Sets the button's label to be the specified string.

Example:
import java.awt.*;
//We have extended the Frame class here,* thus our class "SimpleExample
would behave * like a rame
public class SimpleExample extends Frame<{
SimpleExample(){
Button b=new Button("Button!!");
b.setBounds(50,50,50,50); // setting button position on screen

add(b); //adding button into frame
setSize(500,300); //Setting Frame width and height
setTitle("This is my First AWT example"); //Setting the title of Frame

setLayout(new FlowLayout()); //Setting the layout for the Frame
setVisible(true);

b
public static void main(String args[]){
SimpleExample fr=new SimpleExample(); s
b
3)TextField

The textField component allows the user to edit single line of text.When the
user types a key in the text field the event is sent to the TextField. The key event may
be key pressed, Key released or key typed. The key event is passed to the registered



KeyListener. It is also possible to for an ActionEvent if the ActionEvent is enabled on
the textfield then ActionEvent may be fired by pressing the return key.

Class declaration

Following is the declaration for java.awt.TextField class:

public class TextField extends TextComponent

Class constructors

TextField():Constructs a new text field.

TextField(int columns):-Constructs a new empty text field with the specified
number of columns.

TextField(String text):-Constructs a new text field initialized with the specified
text.

TextField(String text, int columns):-Constructs a new text field initialized
with the specified text to be displayed, and wide enough to hold the specified number
of columns.

Class methods
void addActionListener(ActionListener 1):-Adds the specified action listener to receive action
events from this text field.
void setColumns(int columns):-Sets the number of columns in this text field.
void setText(String t):-Sets the text that is presented by this text component to be
the specified text.

Example:
import java.awt.*;



public class Example2 {
Example2()

¢ Frame fr=new Frame(); //Creating Frame
TextField t = new TextField(); //Creating Text Field
fr.add(t); //adding text field to the frame
fr.setSize(500, 300); //setting frame size

fr.setLayout(new FlowLayout()); //Setting the layout
for the Frame

fr.setVisible(true);

b
public static void main(String args[])
{
Example2 ex = new Example2();
b
b
Checkbox:-

Checkbox control is used to turn an option on(true) or
off(false). There is label for each checkbox representing what the
checkbox does.The state of a checkbox can be changed by clicking on
it.

Class declaration

Following is the declaration for java.awt.Checkbox class:

public class Checkbox extends Component implements
ItemSelectable,Accessible



Class constructors

Checkbox():-Creates a check box with an empty string for its
label.

Checkbox(String label):-Creates a check box with the
specified label.

Checkbox(String label, boolean state):-Creates a check box
with the specified label and sets the specified state.

Checkbox(String label, boolean state, CheckboxGroup
group):-Constructs a Checkbox with the specified label, set to the
specified state, and in the specified check box group.

Checkbox(String label, CheckboxGroup group, boolean
state)”-Creates a check box with the specified label, in the specified
check box group, and set to the specified state.

Class methods:-

void addItemlListener(ItemListener 1):-Adds the specified
item listener to receive item events from this check box.

CheckboxGroup getCheckboxGroup():-Determines this
check box's group.

String getLabel():-Gets the label of this check box.

void setCheckboxGroup(CheckboxGroup g):-Sets this
check box's group to the specified check box group

void setLabel(String label):-Sets this check box's label to be
the string argument.

boolean getState():-Determines whether this check box is in
the on or off state.

void setState(boolean state):-Sets the state of this check
box to the specified state.

Example

5)CheckboxGroup:- The CheckboxGroup class is used to group
the set of checkbox.
Class declaration

Following is the declaration
for java.awt.CheckboxGroup class:

public class CheckboxGroup extends Object implements
Serializable

Class constructors
CheckboxGroup() :=-Creates a new instance of
CheckboxGroup.

Class methods
Checkbox getSelectedCheckbox():-Gets the current choice



from this check box group.

void setSelectedCheckbox(Checkbox box):-Sets the
currently selected check box in this group to be the specified check
box.

String toString():-Returns a string representation of this
check box group, including the value of its current selection.

List:-

The List represents a list of text items. The list can be
configured that user can choose either one item or multiple items.

Class declaration-

Following is the declaration for java.awt.List class:

public class List extends Component implements
ItemSelectable,Acessible

Class constructors-

List():-Creates a new scrolling list.

List(int rows):-Creates a new scrolling list initialized with the
specified number of visible lines.

List(int rows, boolean multipleMode):-Creates a new
scrolling list initialized to display the specified number of rows.

Class methods:-

void add(String item)

Adds the specified item to the end of scrolling list.

void add(String item, int index)

Adds the specified item to the the scrolling list at the position
indicated by the index

void addActionListener(ActionListener I)

Adds the specified action listener to receive action events from
this list..

void addItemListener(ItemListener 1):-Adds the specified
item listener to receive item events from this list.

String getItem(int index):-Gets the item associated with the
specified index.

void deselect(int index):-Deselects the item at the specified
index.

int getItemCount():-Gets the number of items in the list.

String[] getItems():-Gets the items in the list.

int getRows():-Gets the number of visible lines in this list.

int getSelectedIndex():-Gets the index of the selected item
on the list

int[] getSelectedIndexes():-Gets the selected indexes on the
list.

String getSelectedItem():-Gets the selected item on this
scrolling list.

String[] getSelectedItems():-Gets the selected items on this



scrolling list.
Object[] getSelectedObjects():-Gets the selected items on
this scrolling list in an array of Objects.

boolean isIndexSelected(int index):-Determines if the
specified item in this scrolling list is selected.
boolean isMultipleMode():-Determines whether this list

allows multiple selections. ) ) )
int gGHEAINMRENSTBRETINE IRdaRS-PfAe TS iR st i Bsédified

index visible.

void removeActionListener(ActionListener I):-Removes the
specified action listener so that it no longer receives action events
from this list.

void removeAll():Removes all items from this list.

void remove(String item):-Removes the first occurrence of
an item from the list.

void remove(int position):-Removes the item at the specified
position from this scrolling list.

void replaceltem(String newValue, int index):-Replaces
the item at the specified index in the scrolling list with the new string.

void select(int index):-Selects the item at the specified index
in the scrolling list.

void setMultipleMode(boolean b):-Sets
determines whether this list allows multiple selections.

the flag that

boolean
echoCharlIsSet(
):-Indicates
whether or not
this text field has
a character set
for echoing.

void
setEchoChar(ch
ar c):-Sets the
echo character
for this text field



